A well-constrained estimate for the timing of the salmonid whole genome duplication reveals major decoupling from species diversification
نویسندگان
چکیده
Whole genome duplication (WGD) is often considered to be mechanistically associated with species diversification. Such ideas have been anecdotally attached to a WGD at the stem of the salmonid fish family, but remain untested. Here, we characterized an extensive set of gene paralogues retained from the salmonid WGD, in species covering the major lineages (subfamilies Salmoninae, Thymallinae and Coregoninae). By combining the data in calibrated relaxed molecular clock analyses, we provide the first well-constrained and direct estimate for the timing of the salmonid WGD. Our results suggest that the event occurred no later in time than 88 Ma and that 40-50 Myr passed subsequently until the subfamilies diverged. We also recovered a Thymallinae-Coregoninae sister relationship with maximal support. Comparative phylogenetic tests demonstrated that salmonid diversification patterns are closely allied in time with the continuous climatic cooling that followed the Eocene-Oligocene transition, with the highest diversification rates coinciding with recent ice ages. Further tests revealed considerably higher speciation rates in lineages that evolved anadromy--the physiological capacity to migrate between fresh and seawater--than in sister groups that retained the ancestral state of freshwater residency. Anadromy, which probably evolved in response to climatic cooling, is an established catalyst of genetic isolation, particularly during environmental perturbations (for example, glaciation cycles). We thus conclude that climate-linked ecophysiological factors, rather than WGD, were the primary drivers of salmonid diversification.
منابع مشابه
Novel Method for Comparing RADseq Linkage Maps Reveals Chromosome Evolution in Salmonids
CC-BY 4.0 International license peer-reviewed) is the author/funder. It is made available under a The copyright holder for this preprint (which was not. Abstract Genome duplication can provide material for evolutionary innovation, and much remains unknown about its functional effects. Assembly of large, outbred eukaryotic genomes is difficult, but structural rearrangements within such taxa can ...
متن کاملGenome duplication and multiple evolutionary origins of complex migratory behavior in Salmonidae.
Multiple rounds of whole genome duplication have repeatedly marked the evolution of vertebrates, and correlate strongly with morphological innovation. However, less is known about the behavioral, physiological and ecological consequences of genome duplication, and whether these events coincide with major transitions in vertebrate complexity. The complex behavior of anadromy - where adult fishes...
متن کاملComparative Mapping Between Coho Salmon (Oncorhynchus kisutch) and Three Other Salmonids Suggests a Role for Chromosomal Rearrangements in the Retention of Duplicated Regions Following a Whole Genome Duplication Event
Whole genome duplication has been implicated in evolutionary innovation and rapid diversification. In salmonid fishes, however, whole genome duplication significantly pre-dates major transitions across the family, and re-diploidization has been a gradual process between genomes that have remained essentially collinear. Nevertheless, pairs of duplicated chromosome arms have diverged at different...
متن کاملLinkage Mapping Reveals Strong Chiasma Interference in Sockeye Salmon: Implications for Interpreting Genomic Data.
Meiotic recombination is fundamental for generating new genetic variation and for securing proper disjunction. Further, recombination plays an essential role during the rediploidization process of polyploid-origin genomes because crossovers between pairs of homeologous chromosomes retain duplicated regions. A better understanding of how recombination affects genome evolution is crucial for inte...
متن کاملA comparative phylogenetic approach for dating whole genome duplication events
MOTIVATION Whole genome duplications have played a major role in determining the structure of eukaryotic genomes. Current evidence revealing large blocks of duplicated chromatin yields new insights into the evolutionary history of species, but also presents a major challenge for researchers attempting to utilize comparative genomics techniques. Understanding the timing of duplication events rel...
متن کامل